Processing math: 100%

Sunday, May 14, 2023

 A new proof of \left ( \lim_{x\rightarrow 0} {sin(x) \over x} \right ) by using Euler reflection formula.

Euler reflection formula

{\pi \over {sin(\pi a)} } = \Gamma (a)\Gamma (1-a)
where  a\notin \mathbb{Z} 

let  x = \pi a \Rightarrow a = {x \over \pi}

So the formula can be written as:

\sin(x) = {\pi \over {\Gamma({x \over \pi}) \Gamma(1 - {x \over \pi})}}

where  {x \over \pi}\notin \mathbb{Z}

Thus, we have.

 \lim_{x \rightarrow 0}{\sin(x) \over x} = \lim_{x \rightarrow 0}{1 \over {{x \over \pi}\Gamma({x \over \pi}) \Gamma(1 - {x \over \pi})}}

= \lim_{x \rightarrow 0}{1 \over {\Gamma({{x \over \pi} + 1}) \Gamma(1 - {x \over \pi})}}

= {1 \over {\Gamma({0 + 1}) \Gamma(1 - 0)}}  = {1 \over {\Gamma({1})^2}} = 1

No comments:

Post a Comment