A new proof of $\left ( \lim_{x\rightarrow 0} {sin(x) \over x} \right )$ by using Euler reflection formula.
Euler reflection formula
let $x = \pi a \Rightarrow a = {x \over \pi}$
So the formula can be written as:
where ${x \over \pi}\notin \mathbb{Z}$
Thus, we have.
$$ \lim_{x \rightarrow 0}{\sin(x) \over x} = \lim_{x \rightarrow 0}{1 \over {{x \over \pi}\Gamma({x \over \pi}) \Gamma(1 - {x \over \pi})}}$$
$$= \lim_{x \rightarrow 0}{1 \over {\Gamma({{x \over \pi} + 1}) \Gamma(1 - {x \over \pi})}}$$
$$ = {1 \over {\Gamma({0 + 1}) \Gamma(1 - 0)}} = {1 \over {\Gamma({1})^2}} = 1$$
No comments:
Post a Comment